

Powertrain Laser Workstations & Process Controls

By Jack Evanecky

Kokom o Transm ission Plant

Background

- 3 M illion Sq.ft. Facility
- •Began Laser Welding in early 1970's
- Production Volum e 7750 Units per day
- 24 CO 2 Laser Welding Systems

Indiana Transm ission Plant

Background

- •1.4 M illion Sq.ft.Facility
- •Began Production of the 45RFE in 1997
- Production Volum e 3200 Units per day
- 20 CO 2 Laser Welding Systems

Obstacles to Overcome

Machine Integrator

- Realize Existing Problems
- Accept New Designs
- "Think Outside The Box"

Past Practices

- What Works & What Does Not
- Better Application Knowledge

Identify The Needs

- Decrease Operating Cost
- R educe Maintenance Cost
- Lower System Cost
- Im prove Laser Uptim e
- Process Control

Transverse

Flow Laser

ITP Workstation Results

- Cost effective design
- Higher quality laser beam
- Higher throughput

Twin spindle

Previous Workstation Design

- Two Station Dial Table
- Single Spindle
- Weld LiftSlide
- Three Position Part Shuttle

Previous Workstation Design Cont.

- Target Cycle Time 13.5sec.
- Current Cycle Time 16 to 20sec.
- Workstation Accounts for 45% Of All Laser Downtime
- Spindle Run out .006 in. to .030 in.
- 12" Vertical Travel on Weld Side

New Workstation Design

- Twin Weld Spindles / TLC40
- 4 Station Dial Index / Press Table
- High Speed Gantry

Collet Part Holding Details

Manual Press &

Weld Station

Manual / Auto Load Workstation

Spawr Real Time Process Monitor

Real Time Process Control

SYSTEM OVERVIEW

- HOW IT WORKS
 - ITEM TO BE WELDED IS STAGED
 - WELD IS STARTED
 - IRRADIANCE FROM WELD POOL IS PRODUCED
 - SCRAPER MIRROR CAPTURES PART OF IRRADIANCE
 - DETECTOR CONVERTS IRRADIANCE TO ELECTRICAL IMPULSE
 - COMPUTER ANALYSIS
 CONVERTS ELECTRICAL
 IMPULSES TO GRAPHIC
 SIGNATURE AND COMPARES
 TO ESTABLISHED REFERENCE

Sample IR Signatures

 Signature for a laser weld taking place with no cover gas.

Sam e weld except cover gas is flow ing in the direction toward the un-welded area.

Locating Prime Focus

- Typical signature for CW laser weld moving through the prime focus point.
- Peak (highest average point) of signature indicates prime focus.
- Prime focus is highest irradiance power density of focused beam.

Prime Focus

•For diagnostics purposes chopping or pulsing the beam offers high resolution for locating prime focus.

Pass Weld

DaimlerChrysler Failed Weld

Thank You